Abstract
We have applied a new, robust and unsupervised approach to data collection, sorting and analysis that provides fresh insights into the nature of single-molecule junctions. Automation of tunneling current-distance (I(s)) spectroscopy facilitates the collection of very large data sets (up to 100,000 traces for a single experiment), enabling comprehensive statistical interrogations with respect to underlying tunneling characteristics, noise and junction formation probability (JFP). We frequently observe unusual low-to-high through-molecule conductance features with increasing electrode separation, in addition to numerous other "plateau" shapes, which may be related to changes in interfacial or molecular bridge structure. Furthermore, for the first time we use the JFP to characterize the homogeneity of functionalized surfaces at the nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.