Abstract

Abstract. The present study describes Rossby wave packet (RWP) properties in the upper troposphere and lower stratosphere (UTLS) with the use of Global Navigation Satellite System radio occultation (GNSS-RO) measurements. This global study covering both hemispheres' extratropics is the first to tackle medium- and synoptic-scale waves with GNSS-RO. We use 1 decade of GNSS-RO temperature and pressure data from the CHAMP, COSMIC, GRACE, Metop-A, Metop-B, SAC-C and TerraSAR-X missions, combining them into one gridded dataset for the years 2007–2016. Our approach to extract RWP anomalies and their envelope uses Fourier and Hilbert transforms over longitude without pre- or post-processing the data. Our study is purely based on observations, only using ERA-Interim winds to provide information about the background wind regimes. The RWP structures that we obtain in the UTLS agree well with theory and earlier studies, in terms of coherent phase or group propagation, zonal scale and distribution over latitudes. Furthermore, we show that RWP pressure anomalies maximize around the tropopause, while RWP temperature anomalies maximize right above the tropopause height with a contrasting minimum right below. RWP activity follows the zonal-mean tropopause during all seasons. RWP anomalies in the lower stratosphere are dynamically coupled to the upper troposphere. They are part of the same system with a quasi-barotropic structure across the UTLS. RWP activity often reaches up to 20 km height and occasionally higher, defying the Charney–Drazin criterion. We note enhanced amplitude and upward propagation of RWP activity during sudden stratospheric warmings. We provide observational support for improvements in RWP diagnostics and wave trend analysis in models and reanalyses. Wave quantities follow the tropopause, and diagnosing them on fixed pressure levels (which the tropopause does not follow) can lead to aliasing. Our novel approach analyzing GNSS-RO pressure anomalies provides wave signals with better continuity and coherence across the UTLS and the stratosphere, compared to temperature anomalies. Thus, RWP vertical propagation is much easier to analyze with pressure data.

Highlights

  • Rossby wave packets (RWPs) are transient and zonally confined undulations of the extratropical westerly flow

  • After merging all GNSSRO data into one gridded dataset, we find no discontinuities or artifacts arising from the presence of Global Navigation Satellite System radio occultation (GNSS-RO) from different missions, due to the self-calibration and consistency of each satellite instrument and the post(re)processing at the same center (CDAAC)

  • Sometimes this issue could even affect the number of diagnosed RWPs: if the pressure level is further from the tropopause than usual, some part of an RWP may show meridional winds below the threshold, which leads to fragmentation into two or more RWPs; or a low-amplitude RWP may not be detected at all, while at tropopause level the threshold is still exceeded

Read more

Summary

Introduction

Rossby wave packets (RWPs) are transient and zonally confined undulations of the extratropical westerly flow. They can be seen as an organized succession of troughs and ridges with sub-planetary zonal scale and a characteristic timescale from days to a couple of weeks (Wirth et al, 2018). RWPs are steered by the polar front jet, reinforcing it via wave-mean flow interaction (Hoskins et al, 1983), and they represent transient states of the storm tracks, regions with frequent cyclone occurrence (Hoskins and Valdes, 1990; Chang et al, 2002).

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.