Abstract

Studies of patients with tumors associated with osteomalacia (tumor-induced osteomalacia), X-linked hypophosphatemia (XLH) and autosomal-dominant hypophosphatemic rickets have provided important new insights into the identity and mechanisms of action of factors that play a role in controlling renal phosphate excretion and serum phosphate concentrations. In the present review I discuss how these disorders may be mechanistically related to one another. Patients (or mice) with these disorders manifest rickets as a result of excessive urinary phosphate losses. Tumors associated with osteomalacia elaborate factors ('phosphatonins') that increase renal phosphate excretion and reduce serum phosphate concentrations. These factors include fibroblast growth factor (FGF) 23 and frizzled-related protein-4. Mice with XLH (Hyp) elaborate a circulating factor that induces changes in mineral metabolism similar to those in patients with tumor-induced osteomalacia. In mice and humans with XLH, a mutant enzyme, phex/PHEX, cannot degrade the phosphaturic factor. Patients with autosomal-dominant hypophosphatemic rickets produce a mutant FGF 23 that is resistant to proteolytic degradation. Excessive FGF 23 activity is associated with increased renal phosphate excretion and hypophosphatemia. In tumor-induced osteomalacia, excessive production of factors such as FGF 23 and frizzled-related protein-4 is associated with inability of endogenous proteolytic enzymes to degrade these individual substances, with resultant hyperphosphaturia, hypophosphatemia, and rickets. In XLH, mutant PHEX/phex (phosphate-regulating gene with homology to endopeptidases located on the X-chromosome) activity prevents degradation of a phosphaturic factor. In autosomal-dominant hypophosphatemic rickets, a mutant form of FGF 23 that is resistant to proteolytic degradation causes increased renal phosphate losses and hypophosphatemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.