Abstract

: Sarcopenia, defined as decreased muscle mass or function, is prevalent in chronic kidney disease (CKD) increasing the risk of mobility impairment and frailty. CKD leads to metabolic acidosis (MA) and retention of uremic toxins contributing to insulin resistance and impaired muscle mitochondrial energetics. Here we focus on the central role of muscle mitochondrial metabolism in muscle function. : Mitochondrial dysfunction underlies muscle wasting and poor physical endurance in CKD. Uremic toxins accumulate in muscle disrupting mitochondrial respiration and enzymes. Changes in mitochondrial quantity, quality, and oxidative capacity contribute to mobility impairment in CKD. Major determinants of muscle mitochondrial function are kidney function, inflammation, and oxidative stress. In CKD, MA is the major determinant of muscle mitochondrial function. Metabolomics reveals defects in pathways linked to mitochondrial energy metabolism and acid-base homeostasis underlying insulin resistance in CKD. : Decreased mitochondrial capacity and quality control can impair muscle function contributing to decreased physical endurance. MA augments insulin resistance perpetuating the catabolic state underlying muscle wasting in CKD. Further studies are needed to investigate if targeting of MA improves muscle mitochondrial function and insulin resistance translating into meaningful improvements in physical endurance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.