Abstract

Direct membrane filtration (DMF) technology achieves energy self-sufficiency through carbon recovery and utilization from municipal wastewater. To control its severe membrane fouling and improve DMF technology, targeted research on fouling behaviour and mechanisms is essential. In this study, a DMF reactor equipped with a flat-sheet ceramic membrane was conducted under three scenarios: without control, with intermittent aeration, and with periodic backwash. This system achieved efficient carbon concentration with chemical oxygen demand below 50 mg/L in permeate. Membrane fouling was dominated by intermediate blocking and cake filtration. And reversible external resistance accounted for over 85 % of total resistance. Predominant membrane foulants were free proteins, whose deposition underlies the attachment of cells and biopolymers. Backwash decreased the fouling rate and increased fouling layer porosity by indiscriminately detaching foulants from the membrane surface. While aeration enhanced the back transport of large particles and microbial activity, causing a relatively thin and dense fouling layer containing more microorganisms and β-d-glucopyranose polysaccharides, which implies a higher biofouling potential during long-term operation. In addition, aeration combined with backwash enhanced fouling control fivefold over either one alone. Therefore, simultaneous operation of backwash and other mechanical methods that can provide shear without stimulating aerobic microbial activity is a preferred strategy for minimizing membrane fouling during DMF of municipal wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.