Abstract

At the air-water interface, interfacial molecular structure, intermolecular interactions, film relaxation and film respreading of model lung surfactant monolayers were studied using vibrational sum frequency generation (VSFG) spectroscopy combined with a Langmuir film balance. Chain-perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoyl-phosphatidylglycerol (POPG), palmitic acid (PA) and tripalmitin were investigated. In the DPPC-d62-PA binary monolayer, PA showed a condensing effect on the DPPC chains. On the contrary, in the DPPC-d62-POPG binary monolayer, POPG showed a fluidizing effect on the DPPC chains. In the ternary monolayer system of DPPC-d62-POPG-PA, the balance between the fluidizing and the condensing effect was also observed. In addition, the film relaxation behavior of DPPC-d62 and the enhanced film stability of DPPC-d62 caused by the addition of tripalmitin were observed. Real-time VSFG was also employed to study the respreading properties of a complex lung surfactant mixture containing DPPC-d62, POPG, PA and KL4 (a mimic of SP-B) peptide, which revealed DPPC enrichment after film compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call