Abstract

Proteins in extracellular polymeric substances play a vital role in adsorbing organic contaminants in biological wastewater treatment processes, but there is still lack of a fast and effective approach to monitor their interaction. Quartz crystal microbalance with dissipation (QCM-D) was used to investigate the binding and viscoelastic properties of ciprofloxacin (CIP) on extracellular proteins from activated sludge by a two-step sequential deposition method. A saturated viscoelastic monolayer of proteins was formed on the crystal by injecting 500 mg L−1 extracellular proteins. Binding of CIP with the extracellular proteins film followed the pseudo-first-order kinetic equation and Langmuir model, with the maximum binding capacity of 172.4 mg g−1. The binding mass, energy dissipation, and reaction rate constant increased with increasing CIP concentration. A strong binding was obtained at pH 5, suggesting electrostatic interactions as the dominating binding mechanism. Cations inhibited CIP binding with extracellular proteins, probably due to cations competition. Two binding periods were distinguished according to the viscoelastic properties of CIP layer: viscous binding in the initial period and elastic towards binding saturation. Results highlighted QCM-D as an effective and real-time technique to evaluate the role of extracellular proteins in contaminants removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call