Abstract

Hydride anion-conducting oxyhydrides have recently emerged as a brand new class of ionic conductors. Here we shed a first light onto their local vibrations, bonding mechanisms, and anion migration properties using the powerful combination of high-resolution inelastic neutron scattering and a set of rigorously experimentally validated density functional theory calculations. By means of charge-density analysis we establish the bonding to be strongly anisotropic; ionic in the perovskite layer and covalent in the rock salt layer. Climbing nudged elastic band calculations allow us to predict the hydride migration paths, which crucially we are able to link to the observed exotic ionic-covalent hybrid bonding nature. In particular, hydride migration in the rock salt layer is seen to be greatly hindered by the presence of covalent bonding, forcing in-plane hydride migration in the perovskite layer to be the dominant transport mechanism. On the basis of this microscopic insight into the transport and bonding, we are able to propose future candidates for materials that are likely to show enhanced hydride conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.