Abstract

BackgroundThe existing literature about HCV association with, and replication in mosquitoes is extremely poor. To fill this gap, we performed cellular investigations aimed at exploring (i) the capacity of HCV E1E2 glycoproteins to bind on Aedes mosquito cells and (ii) the ability of HCV serum particles (HCVsp) to replicate in these cell lines.MethodsFirst, we used purified E1E2 expressing baculovirus-derived HCV pseudo particles (bacHCVpp) so we could investigate their association with mosquito cell lines from Aedes aegypti (Aag-2) and Aedes albopictus (C6/36). We initiated a series of infections of both mosquito cells (Ae aegypti and Ae albopictus) with the HCVsp (Lat strain - genotype 3) and we observed the evolution dynamics of viral populations within cells over the course of infection via next-generation sequencing (NGS) experiments.ResultsOur binding assays revealed bacHCVpp an association with the mosquito cells, at comparable levels obtained with human hepatocytes (HepaRG cells) used as a control. In our infection experiments, the HCV RNA (+) were detectable by RT-PCR in the cells between 21 and 28 days post-infection (p.i.). In human hepatocytes HepaRG and Ae aegypti insect cells, NGS experiments revealed an increase of global viral diversity with a selection for a quasi-species, suggesting a structuration of the population with elimination of deleterious mutations. The evolutionary pattern in Ae albopictus insect cells is different (stability of viral diversity and polymorphism).ConclusionsThese results demonstrate for the first time that natural HCV could really replicate within Aedes mosquitoes, a discovery which may have major consequences for public health as well as in vaccine development.

Highlights

  • The existing literature about Hepatitis C Virus (HCV) association with, and replication in mosquitoes is extremely poor

  • HCV envelope proteins associate with Aedes Mosquito cells lines We successfully produced recombinant bacHCVpp in Sf21 insect cell cultures infected with a composite baculovirus containing two heterologous expression cassettes, one encoding for the HCV E1E2 precursor fusion protein, and the other encoding for HIV gag protein (Fig. 1b)

  • The results showed that bacHCVpps efficiently associate with human HepaRG hepatocytes in a specific manner, consistent with what was observed for HCV serum particles (HCVsp) [26]

Read more

Summary

Introduction

The existing literature about HCV association with, and replication in mosquitoes is extremely poor. Most of the Flaviviruses are causative agents for major epidemic or endemic diseases including Yellow Fever (YF), Dengue Fever (DEN), West Nile Fever (WN), and recently Zika Virus Disease [2, 3]. Most of these viruses are transmitted by vectors in very different epidemiological ways. Certain Flaviviruses can circulate in epidemic form both in human and animal populations (e.g. YF) These different epidemiological modes of transmission share in common viral amplification in insect cells, the denomination ‘arbovirus’ [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.