Abstract

The production of green hydrogen is a promising alternative to fossil fuels. The current study focuses on the design of microalgae as a catalyst in bioelectrochemical systems for the generation of biohydrogen. Furthermore, the abovementioned target could be achieved by optimizing different parameters, including strains of microalgae, different optical filters, and their shapes. Synechocystis sp. PAK13 (Ba9), Micractinium sp. YACCYB33 (R4), and Desmodesmus intermedius (Sh42) were used and designed as free cells and immobilized microalgae for evaluating their performance for hydrogen production. Alginate was applied for immobilization not only for protecting the immobilized microalgae from stress but also for inhibiting the agglomeration of microalgae and improving stability. The amount of studied immobilized microalgae was 0.01 g/5 ml algae-dissolved in 10 ml alginate gel at 28 °C, 12 h of light (light intensity 30.4 μmol m−2 s−1), and 12 h of darkness with continual aeration (air bump in every strain flask) at pH = 7.2 ± 0.2 in 0.05 %wuxal buffer which has 3.7 ionic strength. Different modalities, including FTIR, UV, and SEM, were performed for the description of selected microalgae. The surface morphology of Ba9 with alginate composite (immobilized Ba9) appeared as a stacked layer with high homogeneity, which facilitates hydrogen production from water. The conversion efficiencies of the immobilized microalgae were evaluated by incident photon-to-current efficiency (IPCE). Under optical filters, the optimum IPCE value was ∼ 7 % at 460 nm for immobilized Ba9. Also, its number of hydrogen moles was calculated to be 16.03 mmol h−1 cm−2 under optical filters. The electrochemical stability of immobilized Ba9 was evaluated through repetitive 100 cycles as a short-term stability test, and the curve of chrono-amperometry after 30 min in 0.05 %wuxal at a constant potential of 0.9 V for 30 min of all studied samples confirmed the high stability of all sample and the immobilized Ba9 has superior activity than others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call