Abstract
Due to the development of insecticide resistance in mosquitoes, with worldwide mosquito-borne diseases resurgence in recent years, recent advances in proteome technology have facilitated a proteome-wide analysis of insecticide resistance-associated proteins in mosquitoes. Understanding the complexity of the molecular basis of insecticide resistance mechanisms employed by mosquitoes will help in designing the most effective and sustainable mosquito control methods. After 30 generations, insecticide-selected strains showed elevated resistance levels to the cypermethrin used for selection. Proteome data allowed the detection of 2892 proteins, of which 2885 differentially expressed proteins (DEPs) achieved quantitative significances in four stages (egg, larvae, pupae, adult) of Culex pipiens pallens cypermethrin-resistant strain as compared to the susceptible strain. Among them, a significant enrichment of proteins, including cuticular proteins, enzymes involved in the detoxification (cytochrome P450, glutathione S-transferases, esterase, ATP-binding cassette) and some biological pathways (oxidative phosphorylation, hippo signalling) that are potentially involved in cypermethrin resistance, was observed. Thirty-one representative DEPs (cytochrome P450, glutathione S-transferase, cuticle protein) during Cx. pipiens pallens developmental stages were confirmed by a parallel reaction monitoring strategy. The present study confirmed the power of isobaric tags for relative and absolute quantification for identifying concomitantly quantitative proteome changes associated with cypermethrin in Cx. pipiens pallens. Proteome analysis suggests that proteome modifications can be selected rapidly by cypermethrin, and multiple resistance mechanisms operate simultaneously in cypermethrin-resistance of Cx. pipiens pallens, Our results interpret that an up-regulated expression of proteins and enzymes like cytochrome P450, glutathione S-transferases, esterase etc. has an impact in insecticide resistance. Previously neglected penetration resistance (cuticular proteins) may play an important role in the adaptive response of Cx. pipiens pallens to insecticides. This information may serve as a basis for future work concerning the possible role of these proteins in cypermethrin resistance in mosquito Cx. pipiens pallens. © 2022 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.