Abstract

The centrosome is the main microtubule-organizing center in animal cells. It participates in the assembly of a bipolar spindle that ensures accurate segregation of chromosomes during mitosis. Recently, mutations in centrosome genes have been identified in patients affected by neurodevelopmental disorders. In fact, the etiology of several neurodevelopmental pathologies seems to be linked to defects in the assembly of the mitotic spindle in the neural stem cell compartment during neurogenesis. Therefore, getting better insights into the structure and function/dysfunction of the mitotic spindle apparatus in an intact tissue environment is of utmost importance. However, imaging nanometer-scale structures like centrosomes and microtubule bundles within the depth of a tissue is still challenging. Here we describe two procedures to acquire high-resolution images on fixed tissues and to perform live imaging of microtubule-based structures in the neuroepithelia of the Drosophila brain and of the mouse neocortex. We take advantage of the accumulation of centrosomes and mitotic figures at the apical surface of these polarized tissues to improve the quality of staining and imaging. Both Drosophila and mouse models with centrosome dysfunction showed abnormalities in the neuroepithelium reminiscent of the ones described in brains of human patients. These observations have highlighted their value as model organisms to study the etiology of human neurodevelopmental pathologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call