Abstract
Abstract Producing a definitive picture of the CO oxidation reaction (CO + O 2 → CO 2 ) on Pt-group metals (Rh, Pd, Pt, and Ru) across the ‘pressure gap’ has proved to be a challenging task. Surface-sensitive techniques amenable to high pressure environments (e.g. PM-IRAS) have sparked a renewed interest in this reaction under realistic pressures. Here, we review recent work in our laboratory examining CO oxidation kinetics on Pt-group single crystals using PM-IRAS, XPS, and mass spectrometry from low (10 −8 –10 −3 Torr) to high (1–10 2 Torr) pressures. These studies have shown that at both low and high pressures (a) Langmuir–Hinshelwood kinetics adequately describe CO oxidation kinetics on Pt-group metals (Pt, Pd, Rh) (i.e. there is no pressure gap) and (b) the most active surface is one with minimal CO coverage. Additionally, recent investigations of high pressure CO oxidation kinetics on SiO 2 film supported Rh particles prepared in situ are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.