Abstract

Variation partitioning and hierarchical partitioning are novel statistical approaches that provide deeper understanding of the importance of different explanatory variables for biodiversity patterns than traditional regression methods. Using these methods, the variation in occupancy and abundance of the clouded apollo butterfly (Parnassius mnemosyne L.) was decomposed into independent and joint effects of larval and adult food resources, microclimate and habitat quantity. The independent effect of habitat quantity variables (habitat area and connectivity) captured the largest fraction of the variation in the clouded apollo patterns, but habitat connectivity had a major contribution only for occupancy data. The independent effects of resources and microclimate were higher on butterfly abundance than on occupancy. However, a considerable amount of variation in the butterfly patterns was accounted for by the joint effects of predictors and may thus be causally related to two or all three groups of variables. Abundance of the butterfly in the surroundings of the focal grid cell had a significant effect in all analyses, independently of the effects of other predictors. Our results encourage wider applications of partitioning methods in biodiversity studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.