Abstract
ABSTRACT Selective autophagy, mediated by cargo receptors and recruiting specific targets to autophagosomes for degradation and recycling, plays an important role in quality control and cellular homeostasis in eukaryotes. The Arabidopsis AtNBR1 shares a similar domain organization with the mammalian autophagic receptors p62 and NBR1. We recently demonstrated that AtNBR1 functions as a selective autophagy receptor for the exocyst component AtExo70E2, a marker for the Exocyst-positive organelle (EXPO), which was achieved via a specific ATG8-AtNBR1-AtExo70E2 interaction in Arabidopsis. Here we further showed that nbr1 CRISPR mutants exhibit an early senescence phenotype under short-day growth conditions, which can be restored by complementation with expression of AtNBR1pro::AtNBR1-GFP in the mutant. Interestingly, in addition to the typical cytosolic and punctate patterns, YFP-AtNBR1 also exhibited a microtubule pattern particularly in the cortical layer. Treatments with the microtubule depolymerizer oryzalin but not the microfilament depolymerizer latrunculin B abolished the microtubule pattern and affected the vacuolar delivery of YFP-AtNBR1 upon autophagy induction. These results indicated that microtubules may be required for AtNBR1 to shuttle its cargos to the vacuole during plant autophagy. The present study thus sheds new light on the recognition and movement pattern of AtNBR1 in selective autophagy in Arabidopsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.