Abstract
This paper describes recent advances in understanding the mechanisms that drive fracture pain and how these findings are helping develop new therapies to treat fracture pain. Immediately following fracture, mechanosensitive nerve fibers that innervate bone are mechanically distorted. This results in these nerve fibers rapidly discharging and signaling the initial sharp fracture pain to the brain. Within minutes to hours, a host of neurotransmitters, cytokines, and nerve growth factor are released by cells at the fracture site. These factors stimulate, sensitize, and induce ectopic nerve sprouting of the sensory and sympathetic nerve fibers which drive the sharp pain upon movement and the dull aching pain at rest. If rapid and effective healing of the fracture occurs, these factors return to baseline and the pain subsides, but if not, these factors can drive chronic bone pain. New mechanism-based therapies have the potential to fundamentally change the way acute and chronic fracture pain is managed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.