Abstract
BackgroundThe aim of the study was to compare a 2D and 3D color system concerning a variety of statistical and graphical methods to assess validity and reliability of color measurements, and provide guidance on when to use which system and how to interpret color distance measures, including ΔE and d(0M1).MethodsThe color of teeth 14 to 24 of 35 patients undergoing regular bleaching treatment was visually assessed and electronically measured with the spectrophotometer Shade Inspector™. Tooth color was recorded before bleaching treatment, after 14 days, and again after 6 months. VITAPAN® Classical (2D) and VITA-3D-Master® (3D) served as reference systems.ResultsConcerning repeated measurements, the 2D system was superior to the 3D system, both visually and electronically in terms of ΔE and d(OM1), for statistics of agreement and reliability. All four methods showed strong patterns in Bland-Altman plots. In the 3D system, hue was less reliable than lightness and chroma, which was more pronounced visually than electronically. The smallest detectable color difference varied among the four methods used, and was most favorable in the electronic 2D system. Comparing the methods, the agreement between the 2D and 3D system in terms of ΔE was not good. The reliability of the visual and electronic method was essentially the same in the 2D and 3D systems; this comparability is fair to good.Clinical relevanceThe 3D system may confuse human raters and even electronic devices. The 2D system is the simple and best choice.
Highlights
The aim of the study was to compare a 2D and 3D color system concerning a variety of statistical and graphical methods to assess validity and reliability of color measurements, and provide guidance on when to use which system and how to interpret color distance measures, including ΔE and d(0M1)
Tooth color is usually described based on the Munsell color space in terms of hue, value, and chroma [1, 2]
Concerning the systematic determination, an implicit prior belief about the VITA 3D Master® was not checked in Ratzmann et al Head & Face Medicine (2020) 16:37 developing this color guide: namely, that any two 3D shades within the same dimension at given constant shade values of the other two dimensions can be well differentiated by the human eye
Summary
The aim of the study was to compare a 2D and 3D color system concerning a variety of statistical and graphical methods to assess validity and reliability of color measurements, and provide guidance on when to use which system and how to interpret color distance measures, including ΔE and d(0M1). ΔE as the Euclidean distance between two points in the color space of the three dimensions (value, chroma, and hue) has been used in the majority of dental color studies [8,9,10,11,12,13,14,15,16,17,18,19,20], a modification of ΔE is preferable [21]. Numerous studies comparing visual and electronic methods have been published over the past decade [3, 8, 11, 18,19,20, 22,23,24,25,26,27]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.