Abstract

Tyrosine ammonia lyase (TAL) catalyzes the deamination of tyrosine to p-coumaric acid in purple phototropic bacteria and Actinomycetales. The enzyme is used in bioengineering and has the potential to be used industrially. It belongs to a family of enzymes that uses a 4-methylidene-imidazole-5-one (MIO) cofactor to catalyze the deamination amino acids. In the present work, we used a QM/MM and a QM cluster models of TAL to explore two putative reaction paths for its catalytic mechanism. Part of the N-MIO mechanism was previously studied by computational methods. We improved on previous studies by using a larger, more complete model of the enzyme, and by describing the complete reaction path. The activation energy for this mechanism, in agreement with the previous study, is 28.5kcal/mol. We also found another reaction path that has overall better kinetics and reaches the products in a single reaction step. The barrier for this Single-Step mechanism is 16.6kcal/mol, which agrees very well with the experimental kcat of 16.0kcal/mol. The geometrical parameters obtained for the cluster and QM/MM models are very similar, despite differences in the relative energies. This means that both approaches are capable of describing the correct catalytic path of TAL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.