Abstract
Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependence of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant.
Highlights
Maize is one of the most important cereals in the world both for human consumption and livestock feeding
For the control samples attached to ZP434 maize hybrid, the raffinose content is the highest in RoS, whilst for ZP704 maize hybrid in the control samples, the raffinose is stored mostly in plumule and RoS (Table 1)
In the case of ZP434 hybrid treated with different concentrations 24-EBL, the highest content of raffinose was identified in the radicle, plumule and RoS, at the highest exogenously added concentration of 24-EBL (5.20 × 10−9 M) (Table 1)
Summary
Maize is one of the most important cereals in the world both for human consumption and livestock feeding. Maize grain is used for all livestock production, while the whole maize plant is traditionally used for ruminants, mostly as silage [1]. Reactivity model of maize dehydration stress value of maize [2]. Due to its high water content, whole maize plant requires to be dehydrated before the inclusion in pelleted diets for some animals, and the maturity stage is important, since the dry matter content of maize plant increases from 23 to 37% during the maturing process of the grain [3]. Immature maize has a higher protein concentration than mature maize, but a lower energy value. As the grain progresses from early dough stage to commercial maturity, the percentage of grain in the plant increases, and crude protein (CP) and crude fibre (CF) decrease while starch increases [4]. Maize dehydration is very important for its further distribution and storage as it is more hygroscopic than paddy rice and wheat and absorbs moisture from the air more quickly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.