Abstract

Recently, the modulation of cosmic rays in the heliosphere has increasingly been studied by solving the well known transport equation via an approach based on stochastic differential equations. This approach, which is now well-established and published, allows for an in depth study of the modulation effects of the wavy heliospheric current sheet, in particular as its waviness increases with solar activity up to extreme maximum conditions. This is possible because of the numerical stability of the approach as well as its ability to trace pseudo-particles so that insightful trajectories of how they respond to the wavy heliospheric current sheet can be computed and displayed. Utilising such a stochastic model, we present valuable new insights into how the geometry of the wavy current sheet can affect the modulation of cosmic rays, especially at the highest levels of solar activity. This enables us to show, from a modeling perspective, why a certain choice for the current sheet profile is more suited than another at these high solar activity levels. We emphasise the importance of an effective tilt angle and illustrate how this concept can be employed effectively in interpreting results pertaining to the wavy current sheet as well as the modulation associated with this important heliospheric structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.