Abstract

ABSTRACTActive suspensions for railway vehicles have been a topic of research for a number of decades and while their applications in service operation are limited, it seems clear that they will in due course see widespread adoption. Railway suspension design is a problem of compromise on the non-trivial trade-off of ride quality versus track following (guidance), and the skyhook damping control approach has been paramount in illustrating the potential benefits. Since skyhook damping control, various advanced control studies appeared contributing to redefine the boundaries of the aforementioned trade-off. Yet there is no study on the impact of fractional order (FO) methods in the context of skyhook railway active suspensions and in particular related to skyhook damping control. This is the area to which this paper strongly contributes. We present findings from a current project on FO controllers for railway vehicles active suspensions, in particular work on the effect of FO methods in basic skyhook damping control schemes, i.e. pure and intuitively based skyhook. First, we present a brief review of conventional skyhook damping control and then proceed to a rigorous investigation of the impact of FO on the ride quality/track following trade-off. The relevant benefits from FO methods are appraised and new insights highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call