Abstract

Objective:Reproducibility of qualitative changes in histopathological diagnosis involving narrow variation is often challenging. This study aims to characterize the histological fibrotic events in detail so as to derive an in-depth multiparametric algorithm with individually quantified histological parameters for effective monitoring of the. disease process in oral submucous fibrosis and for potential therapeutic targets for early intervention.Methods:Formalin fixed paraffin embedded (FFPE) blocks of oral submucous fibrosis (OSMF), were taken and sections were stained with Hematoxylin & Eosin stain and Masson Trichrome stain. Photomicrographs were assessed for various morphometric parameters with Image J software version 1.8. Linear Regression was used to model the relationship using Inflammatory Cell Count, Extent of Inflammation collagen stained area, Epithelial thickness integrated density of collagen, MVPA, Area, Perimeter, were taken as variables.Result:Inflammatory cell count and the extent of inflammation also decreased with increasing grades of OSMF. Collagen proportionate area, integrated collagen density and epithelial thickness were compared among different grades of OSMF. Grade IV OSMF had greatest mean collagen proportionate area , highest integrated collagen density and lowest epithelial thickness when compared to other grades of OSMF. Linear regression model revealed smaller variation between Grade I to Grade II. Whereas Grade II to Grade IV exhibited larger variation suggestive of increased growth rate and all the coefficients were found to lie within 95% confidence limitsConclusion:Diagnostic algorithm with multiparametric regression model were derived and combinatorial therapeutic approaches have been suggested for more effective management of oral submucous fibrosis

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call