Abstract

We herein review various pharmacological and clinical aspects of pegylated liposomal doxorubicin (PLD), the first nanomedicine to be approved for cancer therapy, and discuss the gap between its potent antitumor activity in preclinical studies and its comparatively modest achievements in clinical studies and limited use in clinical practice. PLD is a complex formulation of doxorubicin based on pharmaceutical nanotechnology with unique pharmacokinetic and pharmacodynamic properties. Its long circulation time with stable retention of the payload and its accumulation in tumors with high vascular permeability both result in important advantages over conventional chemotherapy. The ability of PLD to buffer a number of undesirable side effects of doxorubicin, including a major risk reduction in cardiac toxicity, is now well-established and confers a major added value in a number of disease conditions. PLD is approved for the treatment of ovarian cancer, breast cancer, multiple myeloma, and Kaposi sarcoma. In addition, clinically significant antitumor activity of PLD has been reported in a number of other cancer types, including lymphomas and soft tissue sarcomas. In spite of this, PLD has not replaced conventional doxorubicin in common applications such as the adjuvant and neoadjuvant treatment of breast cancer, and its use in the clinic has not become as widespread as one may have predicted. Exploiting the unique pharmacology of PLD, analyzing its selective biodistribution and homing to tumors in cancer patients with proper theranostic tools, and harnessing its complex interaction with the immune system, will lead to a more selective and rational use of PLD that may have great impact on future clinical results and may help realize its largely untapped potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.