Abstract

Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.

Highlights

  • Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults

  • The activation of the Wnt/β-catenin signaling pathway in dendritic cells leads to up-regulation of interleukin-10 (IL-10) and indoleamine 2,3-dioxygenase 1 (IDO) secretion leading to an inhibition of tumor-infiltrating lymphocytes (TILs) cytotoxic properties

  • The canonical Wnt/β-catenin signaling pathway plays a crucial role during the different steps of bone sarcoma growth and the metastatic process, its involvement has been more studied in osteosarcoma than in Ewing sarcoma

Read more

Summary

Primary Bone Tumors

Osteosarcoma and Ewing sarcoma are the most common primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation for Ewing sarcoma, associated with tumor resection. Osteosarcoma that mainly occurs at the ends of long bones is not associated with any clinical signs except severe pain or spontaneous fracture. Osteosarcoma does not express specific oncogenic markers but exhibits a large number and variety of genetic alterations. In contrast to osteosarcoma, Ewing sarcoma is characterized by a chromosomal translocation between the EWSR1 and FLI1 genes in 90% of cases, or by the fusion of EWSR1 with other transcription factors of the E26 Transformation-Specific (ETS) gene family in 10% of cases [6,7,8]. Despite progress in understanding the biology of osteosarcoma and Ewing sarcoma, no targeted therapy could be currently implemented to improve patient survival. New therapeutic research is moving towards targeting different actors of the bone microenvironment

Tumor Microenvironment
Hijacking of the Bone Tumor Microenvironment by Bone Sarcoma Cells
Bone Sarcoma Microenvironment as a Prognostic Marker or Therapeutic Target
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.