Abstract
The paper presents new high-resolution spectroscopic data for the 1.5 µm region of ammonia. All measurements have been taken in the slit-jet supersonic expansion leading to effective rotational cooling and thus facilitating significant simplification of the spectra. We demonstrate the method of controlling the expansion temperature by changing the ammonia concentration and total stagnation pressure in the jet. This allows recording spectra at 20 K and 80 K, respectively. We demonstrate two-temperature technique based on line intensity analysis using those jet spectra, that proves very effective in determining the lower state energies for states with J″=0,1,and2. The transitions originating from such states are especially important for the identification of vibrational band origins and a critical evaluation of the accuracy of the latest theoretical calculations. Empirical rotational assignments were performed for 46 ro-vibrational transitions between 6500 cm−1 and 6900 cm−1, respectively. Seven lines have been identified as R(0) transitions with J″=K″=0, four of which are first-time identifications and/or corrections of previous misassignments. The assignments were then reconfirmed using the R(0) - P(2) ground state combination differences. Additional corresponding P(1) transitions terminating in the J′=K′=0 upper level were found. These point straight to the vibrational band origins. Altogether, band origins for 7 vibrations have been determined and the corresponding R(0), P(1) and P(2) lines have been assigned. Finally, the experimental data are compared to highly-accurate theoretical predictions for ammonia in this spectral range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.