Abstract

We have designed and synthesized novel tetraphenylethylene (TPE) appended organic fluorogens and unfold their unique Raman fingerprinting reflected by surface-enhanced Raman scattering (SERS) upon adsorption on nanoroughened gold surface as a new insight in addition to their prevalent aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) phenomena. A series of five TPE analogues has been synthesized consisting of different electron donors such as (1) indoline with propyl (TPE-In), (2) indoline with lipoic acid (TPE-In-L), (3) indoline with Boc-protected propyl amine (TPE-In-Boc), (4) benzothaizole (TPE-B), and (5) quinaldine (TPE-Q). Interestingly, all five TPE analogues produced multiplexing Raman signal pattern, out of which TPE-In-Boc showed a significant increase in signal intensity in the fingerprint region. An efficient SERS nanoprobe has been constructed using gold nanoparticles as SERS substrate, and the TPE-In as the Raman reporter, which conjugated with a specific peptide substrate, Cys-Ser-Lys-Leu-Gln-OH, well-known for the recognition of prostate-specific antigen (PSA). The designated nanoprobe TPE-In-PSA@Au acted as SERS "ON/OFF" probe in peace with the vicinity of PSA protease, which distinctly recognizes PSA expression with a limit of detection of 0.5 ng in SERS platform. Furthermore, TPE-In-PSA@Au nanoprobe was efficiently recognized the overexpressed PSA in human LNCaP cells, which can be visualized through SERS spectral analysis and SERS mapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call