Abstract

While studying time fractional fluid flow problems it is typical to consider the Caputo derivative, however, these models have limitations including a singular kernel and an infinite waiting time from a random walk perspective. To help remedy this problem, this paper considers a tempered Caputo derivative, giving the system a finite waiting time. Initially, a fast approximation to a generalised tempered diffusion problem is developed using a sum of exponential approximation. The scheme is then proven to be unconditionally stable and convergent. The convergence properties are also tested on a sample solution. The fast scheme is then applied to a system of coupled tempered equations which describes the concentration, temperature and velocity of a nanofluid under the Boussinesq approximation. The most notable finding is that increasing both the fractional and tempering parameters reduces the heat transfer ability of the nanofluid system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.