Abstract

Sequential infiltration synthesis (SIS) has been recently demonstrated to increase the etch resistance of optical, e-beam, and block copolymer lithography resists for sub-50 nm pattern transfer. Although SIS can dramatically enhance pattern transfer relevant to device applications, the complex processes involved in SIS are not clearly understood. Fundamental knowledge of the chemistry underlying SIS is necessary to ensure a high degree of perfection in large-scale lithography. To this end, we performed in situ Fourier transform infrared (FTIR) spectroscopic measurements during the SIS of Al2O3 using trimethylaluminum (TMA) and H2O into poly(methyl methacrylate) (PMMA). The FTIR results revealed that TMA reacts quickly with PMMA to form an unstable complex. The subsequent conversion of this intermediate complex into stable Al—O linkages is slow and must compete with rapid TMA desorption. We support this interpretation of the FTIR data using density functional theory to calculate plausible structures for th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.