Abstract

The tubular morphogroup is a common component of Earth's first complex, multicellular communities-the Ediacaran biota-and offers valuable insight into biological traits that are fundamental to animal life because they have intriguing links to metazoan phyla and are highly abundant in Ediacaran ecosystems. Biomineral tubes (e.g. Cloudina) are well described from the Nama assemblage (~550-538 Myr), yielding a relatively detailed understanding of this subset of the morphogroup. Conversely, the non-biomineral tubular taxa of the Nama assemblage, as well as of the older White Sea assemblage (~560-550 Myr), are poorly understood. As a result, the variability of characters that define non-biomineral tubular organisms is unknown and their diversity dynamics throughout the terminal Ediacaran are unconstrained. To test hypotheses related to the diversity, morphological variability and temporal distribution of non-biomineral tubes, a comprehensive database of non-biomineral Ediacaran tubular taxa was compiled. Results demonstrate previously unrecognized morphological disparity in the non-biomineral tubular morphogroup and reveal that it comprises a higher number of genera than all other non-tubular morphogroups in the White Sea and the Nama. Thus, it illustrates that a tubular form dominated Ediacaran ecosystems for considerably longer than previously appreciated and, importantly, was the most common solution to early multicellularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call