Abstract
In this study, we investigated the main features of the causative fault of the 24 January 2020, Mw 6.8 Elazığ earthquake (Turkey) using seismological and geodetic data sets to provide new insight into the East Anatolian Fault Zone (EAFZ). We first constrained the co-seismic surface deformation and the rupture geometry of the causative fault segment using Interferometric Synthetic Aperture Radar (InSAR) interferograms (Sentinel-1A/B satellites) and teleseismic waveform inversion, respectively. Also, we determined the centroid moment tensor (CMT) solutions of focal mechanisms of the 27 aftershocks using the regional waveform inversion method. Finally, we evaluated the co-seismic slip distribution and the CMT solutions of the causative fault as well as of adjacent segments using the 27 focal solutions of the aftershocks, superimposed on the surface deformation pattern. The CMT solution of the 24 January 2020Elazığ earthquake reveals a pure strike-slip focal mechanism, consistent with the structural pattern and left-lateral motion of the EAFZ. The rupture process of the Elazığ event indicated that the rupture is started at 12 km around the hypocenter, and then propagated bilaterally along the NE-SW but mainly toward the southwest. The rupture slip has initially propagated toward the southwest (first 10 s) and northeast (4 s), and again toward the southwest (9 s). Maximum displacement is calculated as 1.3 m about 20 km southwest of the hypocenter at 6 km depth (centroid depth). The rupture stopped to down-dip around 20 km depth toward the southwest. The distribution of the slip vectors indicates that the rupture continued mostly through a normal oblique movement. Most of the moment release was released SW of the hypocenter and the rupture reached up to around 50 km. The focal mechanisms of analyzed 27 aftershocks show strike-slip, but mostly normal and normal oblique-slip faulting with an orientation of the tensional axes (NNE-SSW), indicating a normal oblique-slip, “transtensional” stress regime, parallel-subparallel to the strike of the EAFZ, consistent with SW-rupture directivity and co- seismic deformation pattern. Finally, based on the co-seismic surface deformation compatible with the distributional pattern of normal focal solutions, normal and normal oblique-slip focals of the aftershocks evidence the rupture-parallel pull-apart basin activation as a segment boundary of the left-lateral strike-slip movement of the EAFZ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.