Abstract

P-nitrophenol (p-NP) is a recalcitrant organic compound attracted great environmental attention, but its degradation mechanism is indeterminacy, which challenges its treatment, migration, transformation and ecological impact in the environment. In the present study, the aqueous-phase decomposition process of p-NP initiated by O3 has been investigated by a theoretical calculation method. The detailed possible reaction pathways for the oxidative degradation of p-NP by ozone have been proposed. The chemical reaction thermodynamics results show that the reaction barriers of all ozone-initiated pathways are below 15 kcal·mol−1, indicating that ozone can completely initiate the oxidation of p-NP under natural conditions. However, the kinetic results show that the initiation reaction of p-NP by ozone alone is relatively slow compared to the reaction by OH. Interestingly, under ultraviolet (UV) radiation, the dissolved ozone interacts with water and produces two active radicals: OH and HO2. The reaction rate of p-NP initiated with OH is much higher than that with ozone, implying that the OH produced in the photochemical process can improve the removal efficiency of p-NP. The intermediates generated in the ozone-initiated reaction have been found to decompose into small molecule organic acids, aldehydes and ketones. The potential carcinogenicities and teratogenicities of the transformation products have also been studied, and some of them still have carcinogenic activity, which deserve further attention. In addition, to our knowledge, this may be the first computational chemistry study on the degradation of p-NP initiated by HO2. All the results provide a new fundamental understanding for the migration and transformation of p-NP in water environment, and indicate that further assessment is needed for the impact of p-NP and especially its transformation products on the ecological environment in a significant way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.