Abstract

Polymers containing 6- and 7-substituted coumarin moieties were prepared as photoalignment films through linearly polarized UV irradiation to a varying fluence for an investigation of liquid crystal orientation. Model coumarin monomers and dimers were also synthesized and characterized as part of a novel approach to the interpretation of liquid crystal orientation in terms of monomer conversion. The experimental results for monomer conversion as a function of fluence were used to validate the first-order kinetics with an exponentially decaying rate constant as the reaction proceeds. A kinetic model was constructed to describe the evolutions of the orientational order on the parts of the reacted and the unreacted coumarin moieties. The model was instrumental to the visualization of liquid crystal orientation on photoalignment films at the early and the late stages of dimerization. Furthermore, the observed crossover in liquid crystal orientation on the polymer film comprising 7-substituted coumarin moieties was successfully interpreted by considering three factors: the relative abundance of the reacted and the unreacted coumarin moieties, the degrees of their orientational order predicted by the kinetic model, and the energetics of molecular interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.