Abstract

Identifying sediment phosphorus sources, the key to control eutrophication, is hindered in multi-source polluted urban rivers by the lack of appropriate methods and data resolution. Community-based microbial source tracking (MST) offers new insight, but the bacterial communities could be affected by environmental fluctuations during the migration with sediments, which might induce instability of MST results. Therefore, the effects of environmental-induced community succession on the stability of MST were compared in this study. Liangxi River, a highly eutrophic urban river, was selected as the study area where sediment phosphorus sources are difficult to track because of multi-source pollution and complicated hydrodynamic conditions. Spearman correlation analysis (P < 0.05) was conducted to recognize a close relationship between sediment, bacterial communities and phosphorus, verifying the feasibility of MST for identify sediment phosphorus sources. Two distinct microbial community fingerprints were constructed based on whether excluded 113 vulnerable species, which were identified by analyzing the differences of microorganisms across a concentration gradient of exogenous phosphorus input in microbial environmental response experiment. Because of the lower unknown proportion and relative standard deviations, MST results were more stable and reliable when based on the fingerprints excluding species vulnerable to phosphorus. This study presents a novel insight on how to identify sediment phosphorus sources in multi-source polluted urban river, and would help to develop preferential control strategies for eutrophication management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call