Abstract

An open new perspective has been established toward synthesizing eco-friendly CSA@g-C3 N4 employing surface engineering. The carbon nitride modified through camphorsulfonic acid was designed and developed in a category of the new generation of photocatalysts for the oxidation of benzyl alcohol and thioanisole in the existence of a natural deep eutectic solvent (NADES). In comparison with pure g-C3 N4 , not only does CSA@g-C3 N4 exhibit an extraordinarily higher ability for harvesting visible light stemming from declining the recombination rate of electrons/holes dependent on PL results but it also reveals notable photocatalytic oxidation capability in the transformation of alcohols as well as thiols into relevant compounds. In addition, non-metal compound (CSA) incorporation would result in considerably diminishing the energy band gap value from 2.8 to 2.28 eV to escalate the visible-light absorption of g-C3 N4 . While the conventional consensus implies that inherent properties of photocatalysts bring on high photoactivity, this study indicates that deploying choline chloride-urea deep eutectic solvent as an external factor plays the role of photoactivity accelerator. Furthermore, readily recycling and reusability can be achieved for the photocatalytic setup of CSA@g-C3 N4 ascribed to its heterogeneous nature with no drop in the photoactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.