Abstract

BackgroundFBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is characterized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. This type of CL follows mostly autosomal recessive (AR) and less commonly autosomal dominant patterns of inheritance.ResultsIn this study, we detected a novel homozygous missense variant in exon 6 of FBLN5 gene (c.G544C, p.A182P) by using whole exome sequencing in a consanguineous Iranian family with two affected members. Our twin patients showed some of the clinical manifestation of FBLN5-related CL but they did not present pulmonary complications, gastrointestinal and genitourinary abnormalities. The notable thing about this monozygotic twin sisters is that only one of them showed ventricular septal defect, suggesting that this type of CL has intrafamilial variability. Co-segregation analysis showed the patients’ parents and relatives were heterozygous for detected variation suggesting AR form of the CL. In silico prediction tools showed that this mutation is pathogenic and 3D modeling of the normal and mutant protein revealed relative structural alteration of fibulin-5 suggesting that the A182P can contribute to the CL phenotype via the combined effect of lack of protein function and partly misfolding-associated toxicity.ConclusionWe underlined the probable roles and functions of the involved domain of fibulin-5 and proposed some possible mechanisms involved in AR form of FBLN5-related CL. However, further functional studies and subsequent clinical and molecular investigations are needed to confirm our findings.

Highlights

  • FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is charac‐ terized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis

  • There are various Autosomal recessive (ARCL)-associated genes such as the FBLN5, EGF containing fibulin extracellular matrix protein 2 (EFEMP2 known as FBLN4), latent transforming growth factor beta binding protein 4 (LTBP4), ATPase H + transporting V0 subunit a2 (ATP6V0A2), pyrroline-5-carboxylate reductase 1 (PYCR1), ATPase H + transporting V1 subunit E1 (ATP6V1E1), ATPase H + transporting V1 subunit A (ATP6V1A), aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and PYCR1

  • We propose some explanations for phenotype heterogeneity and suggest some possible mechanisms of CL pathogenesis resulting from different mutations in the FBLN5 gene

Read more

Summary

Introduction

FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is charac‐ terized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. There are various ARCL-associated genes such as the FBLN5, EGF containing fibulin extracellular matrix protein 2 (EFEMP2 known as FBLN4), latent transforming growth factor beta binding protein 4 (LTBP4), ATPase H + transporting V0 subunit a2 (ATP6V0A2), pyrroline-5-carboxylate reductase 1 (PYCR1), ATPase H + transporting V1 subunit E1 (ATP6V1E1), ATPase H + transporting V1 subunit A (ATP6V1A), aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and PYCR1 This type of CL is often a life threatening, generalized neonatal disorder with severe systemic manifestation such as severe gastrointestinal, cardiopulmonary, and urinary abnormalities alongside with the skin manifestations which are presented in the whole body [2, 4, 11] (Table 2)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call