Abstract
Bimetallic palladium-based supported catalysts were tested in the liquid phase hydrogenation of nitrates. They were characterised by XPS, CO chemisorption, TPD–TPR and DRIFT. The effect of the preparation method, the support, the precursors, the relative amount of active metals and their role in the formation of intermediates and products are tentatively discussed. The catalytic activity and the formation of intermediate nitrite depend on the Pd–Cu ratio. Catalysts presenting a Pd/Cu atomic ratio >1 display the highest activity and the lowest intermediate nitrite than those presenting a Pd/Cu atomic ratio <1. Sol–gel method gives catalysts with a high activity and a low nitrite formation. The Pd–Cu-based catalyst supported on zirconia is more active and selective in N2 compared to the corresponding Pd–Sn catalyst. An enrichment of the surface by Pd is responsible for a low intermediate nitrite formation and high selectivity in N2. The reduction of NO is activated on Pd–Cu catalysts, contrary to Pd–Sn catalysts. Sn promotes the formation of ammonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.