Abstract

The Time Dependent Dielectric Breakdown (TDDB) of Ultra-Low-κ (ULK) (κ=2.7) and porous ULK SiCOH (κ=2.55) was systematically investigated using both Constant Current Stress (CCS) and Constant Voltage Stress (CVS) method on our 32nm and 28nm technologies. The invariance of J <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t unambiguously suggest that the NBlock-IMD interface Cu diffusion is the dominant failure mechanism. Also, the electric field independent TDDB thermal activation energy was experimentally identified. By comparing the distribution of t <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BD</inf> and J <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BD</inf> obtained by CVS, J <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BD</inf> gives a better β value closer to intrinsic because die to die spatial variations are automatically compensated. The extracted β is also consistent with that from Poisson area scaling study. At high current stress conditions, J <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BD</inf> start to drop, indicating another failure mechanism starts to dominate. In summary, the evaluation of J <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BD</inf> provides a new insight in the low-κ TDDB breakdown mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.