Abstract

TAR RNA is a potential target for AIDS therapy. Ligand-based virtual screening was performed to retrieve novel scaffolds for RNA-binding molecules capable of inhibiting the Tat-TAR interaction, which is essential for HIV replication. We used a "fuzzy" pharmacophore approach (SQUID) and an alignment-free pharmacophore method (CATS3D) to carry out virtual screening of a vendor database of small molecules and to perform "scaffold-hopping". A small subset of 19 candidate molecules were experimentally tested for TAR RNA binding in a fluorescence resonance energy transfer (FRET) assay. Both methods retrieved molecules that exhibited activities comparable to those of the reference molecules acetylpromazine and chlorpromazine, with the best molecule showing ten times better binding behavior (IC50 = 46 microM). The hits had molecular scaffolds different from those of the reference molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.