Abstract
A screen has been performed of possible inhibitors of the quinol oxidation sites of the two terminal oxidases of Escherichia coli, cytochromes bo and bd. Aurachin C and its analogues were found to be particularly effective inhibitors of both enzymes, whereas aurachin D and its analogues displayed a selectivity for inhibition of cytochrome bd. In addition, a tridecyl derivative of stigmatellin was found to inhibit cytochrome bo at concentrations which were without significant effect on cytochrome bd. Titration of membrane-bound cytochromes bo and bd with aurachin C gave an observed dissociation constant in the range of 10(-8) M. A similar observed dissociation constant was determined for aurachin D inhibition of cytochrome bd. For both enzymes, their kinetic behavior during a series of substrate pulses indicates that it is reduction of the enzyme by quinol, and not reaction with oxygen, which is inhibited. It is concluded that the aurachins are powerful inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. The effects of aurachin C on cytochrome bo were investigated in more detail. The number of inhibitor binding sites on the purified enzyme was determined by titration to be 0.6 per enzyme. At an inhibitor/oxidase ratio of 1.0, electron donation into the enzyme from added quinol is extremely slow, making it very unlikely that there is more than one quinone-reactive site. Aurachin C caused a potent inhibition of electron donation from a pulse of quinol.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.