Abstract

Redundantly actuated parallel manipulators (PMs) receive growing interest due to their reduced singularity and enlarged workspace. This paper proposes new indices for optimal design and analysis of redundantly actuated PMs by evaluating their motion/force transmissibility. First, we proposed a method to extract a multi-DOF (degrees-of-freedom) redundantly actuated PM into several subsidiary one-DOF PMs with two or more actuators by locking some actuators in an ergodic manner. Then, a new index of output transmission performance is proposed by investigating the mean value of the instantaneous power produced by the multiple actuation wrenches and one twist of the moving platform of one-DOF PMs. A local transmission index (LTI) is defined as the minimum value of the index of output and input transmission performance. A global transmission index (GTI) is then established based on the LTI. The proposed LTI and GTI are coordinate-free and have clear physical interpretation. Finally, the validity and universality of the new indices are demonstrated by optimization and analysis of redundantly actuated lower-mobility PMs with extra articulated six-DOF or limited-DOF limbs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call