Abstract
Experimental data on transverse momentum spectra of strange particles [Formula: see text] produced in [Formula: see text] collisions at [Formula: see text] obtained by the STAR and PHENIX collaborations at RHIC are analyzed in the framework of [Formula: see text]-scaling approach. The concept of the [Formula: see text]-scaling is based on fundamental principles of self-similarity, locality, and fractality of hadron interactions at high energies. General properties of the data [Formula: see text]-presentation are studied. Self-similarity of fractal structure of protons and fragmentation processes with strange particles is discussed. A microscopic scenario of constituent interactions developed within the [Formula: see text]-scaling scheme is used to study the dependence of momentum fractions and recoil mass on the collision energy, transverse momentum and mass of produced inclusive particle, and to estimate the constituent energy loss. We consider that obtained results can be useful in study of strangeness origin, in searching for new physics with strange probes, and can serve for better understanding of fractality of hadron interactions at small scales.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.