Abstract
In this paper, we use the generalized version of convex functions, known as strongly convex functions, to derive improvements to the Jensen–Mercer inequality. We achieve these improvements through the newly discovered characterizations of strongly convex functions, along with some previously known results about strongly convex functions. We are also focused on important applications of the derived results in information theory, deducing estimates for χ-divergence, Kullback–Leibler divergence, Hellinger distance, Bhattacharya distance, Jeffreys distance, and Jensen–Shannon divergence. Additionally, we prove some applications to Mercer-type power means at the end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.