Abstract

AbstractAn improved method for heat transfer calculations inside rough tubes is provided. The model has been obtained from a second assessment developed early by the authors on fluid flow in single-phase inside rough tubes. The proposed correlation has been verified by comparison with a total of 1666 experimental available data of 34 different Newtonian fluids, including air, gases, water and organic liquids. The proposed model covers a validity range for Prandtl number ranging from 0.65 to 4.52×104, values of Reynolds number from 2.4×103 to 8.32×106, a range of relative roughness ranging from 5×10−2 to 2×10−6 , and viscosity ratio from 0.0048 to 181.5. The proposed model provides a good correlation for 2.4×103≤Re<104 and 104≤Re≤8.32×106, with an average error of 18.3% for 70.4% of the data and 16.6% for 74.8% of the data, respectively. The method presents a satisfactory agreement with the experimental data in each interval evaluated; therefore, the model can be considered accurate enough for practical applications. At the present time, a method with similar characteristics is unknown in the available technical literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.