Abstract

SummaryTwo novel hybrid approaches are presented for optimum design of axially symmetric cylindrical walls subjected to posttensioning loads using metaheuristic algorithms such as harmony search (HS), flower pollination algorithm (FPA), and teaching learning based optimization (TLBO). The objective function of the optimization problem is to minimize the total cost of the wall subjected to constraints on the basis of sectional capacities (bending moment, shear force, and axial tension), ACI 318 (building code requirements for structural concrete) requirements and design variables such as wall thickness, compressive strength of concrete, location and intensities of posttensioning cables, size, and spacing of reinforcement. In the optimum design, the performance of the iterative population based metaheuristic algorithms, HS, FPA, and TLBO are compared and tested by taking wall thickness as discrete and continuous variable. In order to improve the efficiency on finding global optimum results, hybrid forms of the HS combined with FPA and TLBO are effective for the optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.