Abstract

Core-satellite graphs Θ(c, s, η) ∼= Kc ▽ (ηKs) are graphs consisting of a central clique Kc (the core) and η copies of Ks (the satellites) meeting in a common clique. They belong to the class of graphs of diameter two. Agave graphs Θ(2, 1, η) ∼= K2 ▽ (ηK1) belong to the general class of complete split graphs, where the graphs consist of a central clique K2 and η copies of K1 which are connected to all the nodes of the clique. They are the subclass of Core-satellite graphs. Let μ(G) be the spectral radius of the signless Laplacian matrix Q(G). In this paper, we have obtained the greatest lower bound and the least upper bound of signless Laplacian spectral radius of Agave graphs. These bounds have been expressed in terms of graph invariants like m the number of edges, n the number of vertices, δ the minimum degree, ∆ the maximum degree, and η copies of the satellite. We have made use of the approximation technique to derive these bounds. This unique approach can be utilized to determine the bounds for the signless Laplacian spectral radius of any general family of graphs. We have also obtained Nordhaus-Gaddum type inequality using the derived bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call