Abstract
We present an implementation of a damped response framework for calculating resonant inelastic X-ray scattering (RIXS) at the equation-of-motion coupled-cluster singles and doubles (CCSD) and second-order approximate coupled-cluster singles and doubles (CC2) levels of theory in the open-source program eT. This framework lays the foundation for future extension to higher excitation methods (notably, the coupled-cluster singles and doubles with perturbative triples, CC3) and to multilevel approaches. Our implementation adopts a fully relaxed ground state and different variants of the core-valence separation projection technique to address convergence issues. Illustrative results are compared with those obtained within the frozen-core core-valence separated approach, available in Q-Chem, as well as with experiment. The performance of the CC2 method is evaluated in comparison with that of CCSD. It is found that, while the CC2 method is noticeably inferior to CCSD for X-ray absorption spectra, the quality of the CC2 RIXS spectra is often comparable to that of the CCSD level of theory, when the same valence excited states are probed. Finally, we present preliminary RIXS results for a solvated molecule in aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.