Abstract
This paper presents the development of a support membrane based on chitosan, cellulose nanocrystals and glycerol (m-CCG) for the antibody immobilization by a covalent crosslinking using glutaraldehyde. The chemical characterization of the support by FTIR showed that m-CCG formation process was stabilized by the formation of hydrogen bonding between each component of m-CCG and the reactive amine groups allowing the antibody immobilization on m-CCG via glutaraldehyde. Moreover, this immobilization on m-CCG was optimized by mathematics modeling approaches, and it exhibited robustness and predictable detection in presence of 0.6% of cellulose nanocrystals (CNCs), 0.5 g of CCG solution per well, after 2 h of antibody immobilization. Results also showed that CNCs (0.6% w/v) was the most important factor of the optimization. At this concentration, CNCs improve the resistance of m-CCG during the crosslinking treatment by a modification of the surface topography and the reinforcement of the tensile strength of m-CCG at >30%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.