Abstract

Viral pneumonia caused by highly infectious SARS-CoV-2 poses a higher risk to older people and those who have underlying health conditions, including Alzheimer’s disease. In this work we present newly designed tacrine-based radioconjugates with physicochemical and biological properties that are crucial for the potential application as diagnostic radiopharmaceuticals. A set of ten tacrine derivatives was synthesized, labelled with gallium-68 and fully characterized in the context of their physicochemical properties. Based on these results, the final two most promising radioconjugates, [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and [68Ga]Ga-THP-NH(CH2)9Tac, were selected for biodistribution studies. The latter compound was proven to be a good inhibitor of cholinesterases with significant affinity toward the lungs, according to the biodistribution studies. On the basis of molecular modelling combined with in vitro studies, we unraveled which structural properties of the developed tacrine derivatives are crucial for high affinity toward acetylcholinesterase, whose increased levels in lung tissues in the course of coronavirus disease indicate the onset of pneumonia. The radiopharmaceutical [68Ga]Ga-THP-NH(CH2)9Tac was ultimately selected due to its increased accuracy and improved sensitivity in PET imaging of lung tissue with high levels of acetylcholinesterase, and it may become a novel potential diagnostic modality for the determination of lung perfusion, including in inflammation after COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.