Abstract

Due to the industrialization, it is urgent to reduce the carbon dioxide emissions. For that, diverse technologies can be applied. In adsorption processes, the development of new materials is an emerging challenge in order to increase the CO2 adsorption capacity of materials and the efficiency of the processes. In this work, a new hybrid honeycomb monolith composed by zeolite and activated carbon was produced by extrusion process. Single adsorption equilibrium isotherms of carbon dioxide and nitrogen were measured by a gravimetric method using a Rubotherm® magnetic suspension balance at three temperatures, 303, 333 and 373 K. The experimental points were well described by Dual-Site Langmuir model. The material presented a carbon dioxide adsorption capacity of 2.63 mol kg−1 at 1 bar and 303 K. Binary breakthrough curves were obtained at 298 K and 2.4 bar with different feed mixtures. The experimental results of adsorption equilibrium were validated with the Dual-Site Langmuir isotherm extended to multicomponent mixtures. A mathematical model was applied to predict the dynamic behaviour of the adsorption bed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call