Abstract
Owing to centre of gravity (C.G.) variations, an aircraft may deviate from its nominal dynamics, which poses special problems to the flight control system. To overcome the limitations of accurate mathematical model and poor robust performance of the conventional method, a new hybrid C.G. estimation-sliding-mode adaptive control approach is proposed. A two-loop sliding-mode based adaptive control scheme is designed to guarantee the robustness of the closed-loop system towards potential uncertainties and disturbances. In addition, online C.G. estimation based on adaptive weight data fusion is introduced to guarantee smaller dynamic inversion errors. The parameter adaptation rules for the hybrid adaptive controller are obtained by the Lyapunov stability theory and Barbalat’s lemma. The simulation results demonstrate that the proposed approach can quickly adapt to the changing dynamics of the aircraft and provide consistent performance under varying C.G. locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.